Abstract Submitted for the DPP11 Meeting of The American Physical Society

Sorting Category: 13.0.0 (T)

Please ensure your abstract body does not exceed the red box.

Action-Angle variables defined on island chains ROBERT L. DEWAR, The Australian National University, STUART R. HUDSON, Princeton Plasma Physics Laboratory, ASHLEY M. GIB-SON, The Australian National University — Straight-field-line coordinates are a particular case of action-angle variables, which, in standard Hamiltonian mechanics, are defined only for integrable systems. In order to describe 3-D magnetic field systems, a generalization of this concept was proposed in [1] that unified the concepts of ghost surfaces (almostinvariant tori defined by an action-gradient flow between X and O points of an island chain) and quadratic-flux-minimizing surfaces (QFMin tori, which minimize a weighted mean of the square of the normal component of B). This was based on a simple canonical transformation, generated by a change of variable $\theta = \theta(\Theta)$, where θ is the old poloidal angle and ⊕ a new one giving straight pseudo-orbits (approximate field lines [2]). This was illustrated using a perturbative construction of the transformation. Investigations of this idea using the Standard Map [3], with the analog of the same constraint as used implicitly in [1] to make Θ unique, show that this constraint is not optimal, as $\theta(\Theta)$ ceases to be monotone beyond a certain nonlinearity.

 R.L. Dewar, S.R. Hudson and A.M. Gibson JPFR (2010) http://arxiv.org/abs/1001.0483; [2] R.L. Dewar, S.R. Hudson and A.M. Gibson CNSNS in press (2011) DOI:10.1016/j.cnsns.2011.04.022; [3] R.L. Dewar and A.B. Khorev, Physica D 85, 66 (1995)

Robert Dewar
robert.dewar@anu.edu.au
The Australian National University

Date submitted: 29 Aug 2011 Electronic form version 1.4